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Abstract: Photocatalysis offers great potential for changing the synthesis of value-added molecules, yet many reactions suffer from low efficiencies

hindering industrial scalability. Molecular dyads are attractive photocatalysts that enable milder conditions and higher reaction efficiencies for

photochemical elemenraty steps (energy and electron transfer) by combining the properties of inorganic and organic chromophores.[1–3] In this study,

we introduce a novel method for generating molecular dyads by mixing a cationic ruthenium complex with an anionic pyrene derivative in water, forming

a salt bichromophore via electrostatic interactions. This Coulombic dyad exhibits long organic triplet lieftimes through energy transfer from the ruthenium

complex, enabling efficient energy transfer catalysis. Compared to traditional molecular dyads and reference photosensitizers, the Coulombic dyad

demonstrates similar reactivity and superior photostability in various photooxygenations. Furthermore, it enhances the quantum yield of photoredox

reactions, attributed to higher cage escape quantum yields after photoinduced electron transfer.[2] Mechanistic insights gained from laboratory-scale

experiments and spectroscopic investigations provide a comprehensive understanding of this easy-to-use photocatalyst class.
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Most Important Elementary Steps
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1. Energy transfer

2. Electron transfer

3A*  +  1X  → 1A  +  3X*

A*  +  Y  → A +  Y+
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Goal: Design elementary steps 

as efficient (elem) as possible

(with  = product of every elem )

Novel Catalyst System
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PTS

✓ Commercially available compounds

✓ Strong attraction between [Ru] and PTS

→ forms ”one unit“

✓ [Ru] absorbs visible light (absorbs light energy)

✓ Efficient triplet formation through [Ru] (important

for energy transfer catalysis)

✓ Key step: Energy transfer from 3[Ru] to PTS

Transient Absorption (TA) Spectroscopy –
Most Important Measurement Technique in this Project
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