
Improving Evolutionary Algorithms
for Automatic Software Development

Alina Geiger
Chair of Information Systems and Business Administration, Prof. Dr. Franz Rothlauf, JGU Mainz

Evolutionary Algorithms (EAs)

In the field of artificial intelligence, EAs are methods for solving optimisation problems.

With EAs, we are able to find an (approximately) optimal solution to a problem from a

large number of possible solutions. EAs solve optimisation problems by imitating the

natural evolutionary process.

The evolutionary process starts with a population of random computer programs that

are evaluated using test examples. Through selection and variation, the population of

computer programs evolves over many generations until an (approximately) optimal

solution is found.

Areas of application include:

Medicine Development of computer programs based on health data that support

medical professionals [6].

Finance Solving optimisation problems, e.g. forecasts for stock market prices [1].

Software development Automated repair of bugs in program code or automated

optimisation of software runtime [4, 7].

Research Aim

How can we further improve EAs in order to develop software automatically?

Selection How do we decide which computer programs will be the parents for

the next generation?

Variation How can we introduce new program code into our population of

computer programs?

Evaluation How do we evaluate the performance of the computer programs in

our population?

The aim of my thesis is to improve state-of-the-art EAs in order to expand the pos-

sibilities for the automatic generation and maintenance of software.

Improving the Selection Process

The selection process determineswhich computer programs survive and act as parents

for the next generation. In ourwork [3], we introduced a novel selectionmethod called

down-sampled ε-lexicase selection (down-ε-lex) and tested its performance against

other selection methods on several benchmark problems.

With our selection method, we were able to find computer programs of higher quality

(with smaller error in terms of the MSE) on the studied problems compared to other

selection methods. Overall, the performance improvements using down-sampled ε-
lexicase selection are up to 85% compared to ε-lexicase selection.

Improving the Variation Process

In ourwork [2] we investigated the use of ChatGPT as a variation operatorwith the aim

to improve the runtime of software and to repair bugs. To do this, we asked ChatGPT

for 5 different implementations of a code snippet.

Main Results:

The number of patches passing software tests is up to 75% higher when using

ChatGPT as a variation operator compared to traditional operators.

The patches generated by ChatGPT are less diverse.

The patch with the best runtime improvement is found by a traditional variation

operator.

Improving the Evaluation Process (Outlook)

During the evolutionary process, we need to evaluate the quality of the computer pro-

grams in our population in order to do the selection process. The quality of computer

programs is usually evaluated based on their performance on test examples.

Problem Evaluating computer programs using a large number of test examples is

expensive.

Proposed Solution Use a random subset of test examples to evaluate computer

programs [5].

Open Question How can we select a subset of test examples that tests as many

behaviors of the computer program as possible?

References

[1] A. Brabazon, M. Kampouridis, and M. O’Neill.

Applications of genetic programming to finance and economics: past, present, future.

Genetic Programming and Evolvable Machines, 21:33–53, 2020.

[2] A. E. I. Brownlee, J. Callan, K. Even-Mendoza, A. Geiger, C. Hanna, J. Petke, F. Sarro, and D. Sobania.

Enhancing genetic improvement mutations using large language models.

In Search-Based Software Engineering, pages 153–159. Springer Nature Switzerland, 2024.

[3] A. Geiger, D. Sobania, and F. Rothlauf.

Down-sampled epsilon-lexicase selection for real-world symbolic regression problems.

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’23, page 1109–1117. ACM, 2023.

[4] S. O. Haraldsson, J. R. Woodward, A. E. Brownlee, and K. Siggeirsdottir.

Fixing bugs in your sleep: How genetic improvement became an overnight success.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion, pages 1513–1520, 2017.

[5] J. G. Hernandez, A. Lalejini, E. Dolson, and C. Ofria.

Random subsampling improves performance in lexicase selection.

In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’19, pages 2028–2031.

ACM, 2019.

[6] W. G. La Cava, P. C. Lee, I. Ajmal, X. Ding, P. Solanki, J. B. Cohen, J. H. Moore, and D. S. Herman.

A flexible symbolic regression method for constructing interpretable clinical prediction models.

NPJ Digital Medicine, 6(1):107, 2023.

[7] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White, and J. R. Woodward.

Genetic improvement of software: a comprehensive survey.

IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2017.

Poster presentation 04/22/2024 geiger@uni-mainz.de

mailto:geiger@uni-mainz.de

