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Can you trust published data?

Prinz et al. (2011) Nature Rev Drug Discov 10: 712-713
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•Oncology

•Women’s health

•Cardiovascular

Poor replicability meanwhile found in several other studies in experimental 

medicine and many other disciplines including social sciences



What are the root causes?

• Outright fraud minor component (intentionally falsified data)

• Lack of detail in Methods section makes replication difficult

But the big-3 apparently are:

• Biases in design, conduct, analysis and reporting of studies

• Low statistical power (sample sizes too small)

• Poor understanding of statistical concepts

Let’s focus on 2 examples were “good intentions” can get uncomfortably close 

to fraud



Randomness principle

• A p-value reports the probability of seeing an effect as large as observed, or 

larger, if the two samples had been selected randomly from populations with 

the same mean/median

– Does not tell whether an observed effect is true or of relevant magnitude

• Only meaningful if all factors other than primary variable are randomly

distributed among groups

– P-values cannot be interpreted at face value if major bias exists (violation 

of randomness principle)

Motulsky (2014) Naunyn-Schmiedeberg‘s Arch Pharmacol 387: 1017-1023



Violation of randomness

• Violations (biases) can occur unconsciously or be investigator-induced

• Unconscious biases

– Sampling error

– Selection bias

– Other biases

• Investigator-induced violations are also referred to as p-hacking

– Includes HARKing

Motulsky (2014) Naunyn-Schmiedeberg‘s Arch Pharmacol 387: 1017-1023



P-hacking

• Various design choices may be fine if pre-specified

• Post-hoc changes in design, conduct, analysis and reporting introduce bias 

and violate randomness principle

• This makes resulting p-values difficult to interpret, irrelevant or even 

misleading

– Bias for finding an effect even if it is not there

– Even if effect true, trend for exaggerated effect size estimate

Motulsky (2014) Naunyn-Schmiedeberg‘s Arch Pharmacol 387: 1017-1023



P-hacking examples

• After n = 6 yielded p = 0.055, add 2 additional experiments

– The new n = 8 is biased by the trend in n = 6 and no longer a random sample

– Variation: Stop adding experiments as soon as p < 0.05

• Post-hoc decision to log-normalize data

– Log normalization can be justified or even required when raw data are skewed and only 

get closer to a normal distribution on a log scale

• Post-hoc change of denominator

– From fmol/mg protein to fmol/g wet weight

• Switch to a different statistical test 

– paired vs. unpaired test

• “Outlier” removal (attrition bias)



HARKing

Hypothesizing After Results are Known

• Redefining study aim after results have been seen

• Introduces bias into reporting

– Focus on “positive” results in reporting

– Making possible chance finding appear as study aim

• Ignores impact of low prior probability on False Discovery Rate

– Increases probability for false positives

• HARKing becomes fraud if paper claims that a HARKed hypothesis had been 

pre-existing

Munafo et al. (2017) Nature Hum Behav 1: 0021



Open access book on reproducibility

https://link.springer.com/book/10.1007/978-3-030-33656-1


Conclusions

• Biases at any level of study design, conduct, analysis and reporting violate 

the randomness principle

– This makes p-values difficult to interpret, possibly misleading

• Pre-specification of all critical elements of study design, conduct and 

analysis, and randomization and blinding are key defenses against 

unintentional bias

• P-Hacking and HARKing are intentionally introduced biases

– Often lead to misleading finding/conclusions or at least exaggerated effect sizes

– Get uncomfortably close to fraud



DON‘T


